
Adaptive Risk Minimization: A Meta-Learning
Approach for Tackling Group Shift

Marvin Zhang⇤1, Henrik Marklund⇤2, Abhishek Gupta1, Sergey Levine1, Chelsea Finn2

1 UC Berkeley, 2 Stanford University

Abstract

A fundamental assumption of most machine learning algorithms is that the training
and test data are drawn from the same underlying distribution. However, this as-
sumption is violated in almost all practical applications: machine learning systems
are regularly tested on data that are structurally different from the training set,
either due to temporal correlations, particular end users, or other factors. In this
work, we consider the setting where test examples are not drawn from the training
distribution. Prior work has approached this problem by attempting to be robust
to all possible test time distributions, which may degrade average performance, or
by “peeking” at the test examples during training, which is not always feasible. In
contrast, we propose to learn models that are adaptable, such that they can adapt
to distribution shift at test time using a batch of unlabeled test data points. We
acquire such models by learning to adapt to training batches sampled according to
different sub-distributions, which simulate structural distribution shifts that may
occur at test time. We introduce the problem of adaptive risk minimization (ARM),
a formalization of this setting that lends itself to meta-learning methods. Compared
to a variety of methods under the paradigms of empirical risk minimization and
robust optimization, our approach provides substantial empirical gains on image
classification problems in the presence of distribution shift.

1 Introduction

The standard assumption in empirical risk minimization (ERM) is that the data distribution at
test time will match their distribution at training time. When this assumption does not hold, the
performance of standard ERM methods typically deteriorates rapidly, e.g., [26, 27], and this setting is
commonly referred to as distribution or dataset shift [51, 35]. For instance, we can imagine an image
classification system that, after training on a large database of past images, is deployed to specific end
users. Each user takes photos with differing cameras, locations, and subjects, leading to shift in the
input distribution. This test scenario must be carefully considered when building machine learning
systems for real world applications.

Algorithms for handling distribution shift have been studied under a number of frameworks [51].
Many of these frameworks, such as domain adaptation [13], assume access to unlabeled test data
at training time, which are often not readily available and can be quite challenging to obtain.
One prominent family of methods that avoids this assumption is distributionally robust optimiza-
tion (DRO) [21, 5, 15]. DRO methods learn robust models by optimizing against adversarially chosen
training distributions, thus these models have maximal worst case performance. However, these
methods can often be overly pessimistic and learn models that do not perform well on the actual test
distributions [31]. This issue of pessimism can be partially mitigated by carefully choosing the set
of adversarial distributions to be robust against, motivating a number of approaches that only allow
the adversary to shift the underlying group distribution, e.g., changing the distribution of attributes

⇤equal contribution

Preprint. Under review.

ar
X

iv
:2

00
7.

02
93

1v
1

 [c
s.L

G
]

6
Ju

l 2
02

0

TTv

standard
assumption
in MLmodels

DARO

consofDR0
solution

CSIWhyDRO canbepessimistic Doesthis
assumption

holdsforotheradversarialexamplestoo

Adaptable models
that can handle
distribution shift
at test time time

Figure 1: A schematic of our problem setting and approach, described in detail in Section 4. Left: During
training, we assume access to labeled data along with group information z, which allows us to construct training
sub-distributions that exhibit group distribution shift. We show only one sub-distribution for brevity, which
depicts an overemphasis on blond-haired males compared to the empirical distribution. This is analogous to the
structural DRO problem setup, but unlike DRO, we use these sub-distributions to learn a model that is adaptable
to distribution shift via a form of meta-learning. Right: We perform unsupervised adaptation to different test
distributions, without requiring test data at training time or specializing to a single test distribution as in domain
adaptation. If the test shifts we observe are similar to those simulated by the training sub-distributions, we expect
that we can effectively adapt to these test distributions for better performance.

or users in the training data. This setting of structural DRO allows for more tractable optimization
while still permitting a wide range of realistic distribution shifts [63, 31, 50, 55].

In this work, we take a different approach to combating group distribution shift by learning models
that are able to deal with shift by adapting to the test time distribution. To do so, we assume that we
can access a batch of unlabeled test data points at test time – as opposed to individual isolated inputs
– which can be used to implicitly infer the test distribution. This assumption is reasonable in many
standard supervised learning setups, e.g., photos from an end user are collected together into a library.
As illustrated in Figure 1, we utilize ideas from meta-learning to train such a model that specializes
its behavior depending on the actual test distribution, thereby suffering less from the pessimism that
plagues DRO, without requiring test data at training time like domain adaptation.

Our first contribution is to formally introduce the problem of adaptive risk minimization (ARM), in
which models have the opportunity to adapt to the data distribution at test time based on unlabeled
data points. Second, we design a method for solving ARM that, given a set of candidate distribution
shifts, meta-learns a model that is adaptable to these shifts. Our experiments demonstrate that our
method is able to outperform both prior ERM and DRO methods in image classification settings
exhibiting group shift at test time, including a DRO benchmark exhibiting attribute shifts [55] and a
federated learning benchmark with different users at training and test time [9].

2 Related Work

Our method uses meta-learning to make it possible for models to adapt to the specific distribution
of inputs seen at test time. A number of prior works have studied distributional shift in various
forms [51], and in this section we review prior work in the most relevant areas, including robust
optimization, domain adaptation, and meta-learning.

Robust optimization. DRO methods optimize machine learning systems to be robust to adversarial
data distributions, thus optimizing for worst case performance against distribution shift [21, 5, 42, 16,
47, 15, 7]. Recent work has shown that these algorithms can be utilized with high capacity function
approximators, such as neural networks, with additional care taken for regularization and model
capacity [55]. Unlike DRO methods, our proposed method doesn’t require the model to perform well
on all test time distribution shifts, but instead trains it to adapt to these shifts.

Also of particular interest are methods for robustness or adaptation to different users [29, 10, 34, 48,
38, 17, 40], a setting commonly referred to as robust or fair federated learning [45, 48, 38]. Unlike
these works, we consider the federated learning problem setting in which we do not assume access to
any labels from any test users, as we partition users into mutually exclusive train and test sets. We
argue that this is a realistic setting for many practical machine learning systems – oftentimes, the
only available information from the end user is an unlabeled batch of data.

Domain adaptation. Another approach to the problem of distribution shift is to assume access
to examples from the test distribution during training [51]. One prominent paradigm is domain
adaptation [13], which augments the training procedure using the test examples, through approaches

2

p
why

ssumbtions
Availabilityof
abatchof
unlabeledtest
data
iswecan
leverageideas
frommeta
learning

I Distributionalb
2 Robust
o optimization Difference

intheforobose
method

cuh Why
BadideaIMHO

If Is adversarialsettingonlysettingwheretheperformanceof amodel is worst

such as importance weighting the training data [61, 32, 12], representation learning [22, 3], and
adversarial training [19, 67, 44]. Our method is similar to unsupervised approaches to domain
adaptation, which make use of unlabeled test data. However, we do not need to specify the test
distribution at training time, and we are not limited to a single test distribution, as in domain adaptation
and transductive learning settings [13, 68].

Meta-learning. Meta-learning [57, 6, 66, 28] has been most extensively studied in the context of
few shot supervised learning methods [56, 69, 52, 18, 70, 62, 20, 1]. These methods, in contrast to
our approach, adapt using small amounts of labeled data. Some meta-learning methods adapt using
both labeled and unlabeled data, such as [53, 71, 46, 2, 39, 4], or consider the setting where task
groupings are not known, such as [23, 30, 24, 59], though these works do not focus on the same
setting of distribution shift. As our work is complementary to prior meta-learning methods, we can in
theory replace our meta-learner with one of these prior methods.

Our method also resembles prior meta-learning methods for domain generalization [37, 14], which
studies shift at the level of test domains. Other prior methods that consider unlabeled test time
adaptation typically only handle label shift [54, 41, 64] or use carefully chosen surrogate losses,
relying on the correlation between this loss and test time performance [65].

3 Preliminaries

In this paper, we focus on the supervised learning problem where, given a training dataset of N input
output pairs (x(i), y(i)) sampled i.i.d. from an unknown distribution p, the goal is to learn a model
g(· ; ✓) : X ! Y that is parameterized by ✓ 2 ⇥ and predicts an output y 2 Y given an input x 2 X .

Group robustness. DRO tries to learn a model that is robust to an adversarial test distribution q
within some uncertainty set Q. One popular method for specifying Q is through structural DRO or
group DRO, which posits a categorical random variable z 2 {1, . . . , S} and defines the adversarial
distribution as q(x, y, z) = q(z)p(x, y|z). This formulation is a generalization of common settings
such as label shift and, arguably, most cases of covariate shift [63, 51, 58]. The fundamental
assumption is that the distribution shift at test time is fully modeled by a shift in the group distribution
q(z) [63, 31]. Q may then be defined in a number of ways, but because z is discrete and finite, we
often choose Q to simply allow for any distribution over z, i.e., any point on the (S � 1)-dimensional
probability simplex [55]. The worst case performance of g is then given by its performance for the
worst realization of z. The adversarial optimization problem for structural DRO is given by

min
✓

sup
q2Q

Eqz

⇥
Epxy|z [`(g(x; ✓), y)]

⇤
.

Group fairness. Closely related to structural DRO are approaches that optimize for fairness across
different groups, e.g., [72]. Methods for fairness are typically concerned with achieving more uniform
accuracy across groups, which is essentially equivalent to the goal of structural DRO [38]. One
prominent approach, which we refer to as q-fairness, specifies a hyperparameter q � 0 and constructs
the optimization problem as

min
✓

Epz

⇥
Epxy|z [`(g(x; ✓), y)]

q+1
⇤
.

We can see that, if q = 0, then this is equivalent to ERM, and as q ! 1, we recover unconstrained
structural DRO. Typically, q is set to some moderate value to trade off between robustness and
accuracy [38]. For brevity, in this work we will refer to structural DRO and group based q-fairness
collectively as group robustness methods.

Meta-learning. We approach the goal of learning adaptable models through the lens of meta-learning.
Supervised meta-learning considers a distribution over tasks p(⌧), where each ⌧ itself specifies a
distribution over data p(x, y|⌧). Given a set of training tasks ⌧train, sampled i.i.d. from p(⌧), the goal
is to optimize a model such that it can quickly learn good performance on a new set of test tasks
⌧test, also sampled i.i.d. from p(⌧).1 To evaluate quick learning, we typically only observe K data
points sampled according to p(x, y|⌧test), where K is some small number. We define a learner as a
function h(· ;�) : ⇥ ⇥ (X ,Y)K ! ⇥, which is parameterized by �. h takes as input the current
model parameters ✓ and K labeled data points and produces updated parameters ✓0 after learning on

1We omit index superscripts on tasks for brevity.

3

L
gWhatis S
otherwaysof

Assumption defining
uncertainty

Whydefining
2 asdiscrete
andfiniteis
agoodchoice

ERMq 0 I obvious
ofa NTeDRO

L Train amodelwith0parameters in
asukervisedway

2 Learn a function h thatupdatestheparameters
0 O

afterlearningon KLabeled datapoints

3 I thal n Ldbetheobjective ofcourse oftimizing

the K points. The goal of meta-learning is to optimize both ✓ and � such that h is able to effectively
update g to achieve good performance on a new task with only a small amount of data from the task.
This goal is given by the optimization problem

min
✓,�

Ep⌧

⇥
Epxy|⌧ [`(g(x; ✓

0), y)]
⇤
, where ✓0 = h(✓, (x1, y1), . . . , (xK , yK);�) . (1)

Prior meta-learning methods differ in how they implement h, with approaches such as recurrent
models [56, 52], gradient based fine tuning [18, 49], and learned embeddings [69, 62]. In Section 4,
we describe our setting, which borrows ideas from group robustness and meta-learning to optimize
for unsupervised adaptation performance to group distribution shifts. We further present our method
based on meta-learning contextual embeddings in subsection 4.2.

4 Adaptive Risk Minimization

In our problem setting, we have access to a training dataset that consists of N labeled data points
(x(i), y(i), z(i)) sampled from the training distribution p, where, like group robustness methods, we
also observe the group z(i) associated with each point. At test time, we are given batches of K
unlabeled data points, where each batch is drawn from a distribution that may differ from both p and
the other batch distributions, and we do not observe either y or z. For example, we can imagine a test
scenario that separately considers each user’s images, as discussed in Section 1.

4.1 Deriving the ARM Objective

We motivate and design our training objective using several mild assumptions. Our first critical
assumption is that we observe the K test points all together rather than one at a time. Second,
we use the structural assumption from the group robustness setting: aligning with meta-learning
terminology, we model different potential test distributions as different tasks ⌧test, and we assume that
⌧test specifies an unknown p(z|⌧test). Since z is a categorical random variable, ⌧test can be instantiated
as the parameters of this categorical distribution, i.e., as a random variable S-dimensional parameter
whose entries sum to 1. Thus, like group robustness, the test distribution parameterized by ⌧test can
be expressed as p(x, y, z|⌧test) = p(z|⌧test)p(x, y|z).
For brevity, let x denote the test batch (x1, . . . , xK), and define y and z analogously. Consider the
distribution of batches of data that we observe at test time, given by the equation

ptest(x,y) =

ZZ
p(x,y|z)p(z|⌧test)p(⌧test)dzd⌧test .

We wish to train a model that can adapt using x, drawn from this joint distribution, to better predict y,
and we must specify our training tasks accordingly. However, we do not know a priori what the test
tasks will be, and we are not provided training tasks as in the standard meta-learning setting. Instead,
we draw inspiration from prior work in deep learning that demonstrates that uniformly sampling
over a quantity of interest, such as labels or groups, is a strong method for achieving robustness
and performance with respect to that quantity [60, 8, 55]. We extend this approach to our setting by
defining our training task distribution p(⌧train) to uniformly cover many different shifts of interest.

For example, in the federated learning setting, one may reasonably assume that the only test distri-
butions of interest are those consisting of data from only a single test user. This intuitively leads
to defining p(⌧train) to uniformly place weight on only tasks that assign probability to only a single
training user. By defining this distribution over training tasks, our model is thus trained to adapt
to specific individual users. In the general case, we define p(⌧train) to be uniform over all group
distributions, in order to break spurious correlations, emphasize rare groups in the training data, and
achieve greater robustness.

In practice, ⌧train specifies a procedure for drawing weighted samples from the training data. Specifi-
cally, we define the empirical group distribution as pemp(z) =

1
N

PN
i=1 1{z(i) = z}, where 1 denotes

the indicator function. To sample training data according to ⌧train, we sample each training point with
probability proportional to pemp(x(i), y(i), z(i)|⌧train) / p(z(i)|⌧train)

pemp(z(i))
.

After constructing training tasks sampled from p(⌧train), our goal is to meta-learn � and ✓ such that
h can adapt g using unlabeled training data sampled according to a particular ⌧train. Assuming that

4

3 Whatshouldbetheo.bgective ofcourse optimizing
thevaluesofO and ol

1Tieconceptof
wing h isn
new Itjust
differsonthe
implementation
side

alhatis

Assumptions

Egesetafgints frigginstructural
assumption

Everyone
should
rememberthis
anyways

checkcodeforthis

we will observe similar batches of data at test time, we can then perform the same unsupervised
adaptation procedure for better test performance. This motivates the ARM objective, given by

min
✓,�

Ep⌧

"
Epz|⌧

"
Epxy|z

"
1

K

KX

k=1

`(g(xk; ✓
0), yk)

###
, where ✓0 = h(✓, x1, . . . , xK ;�) . (2)

As h does not have access to labels, we are able to evaluate the adapted model on the same K data
points used for adaptation, rather than a separate task validation set. This again simulates the test
time settings, where we will adapt on the same test points that we wish to predict on. Because of this
distinction, we refer to h as an adaptation model rather than a learner.

4.2 A Meta-Learning Approach to Optimizing the ARM Objective

Algorithm 1 Meta-Learning for Adaptive Risk Minimization
// Training procedure
Require: # training steps T , sample size K,

learning rate ⌘, training task distribution p(⌧train)

1: Initialize: ✓,�
2: for t = 1, . . . , T do
3: Sample ⌧train ⇠ p(·)
4: Sample (xk, yk, zk) ⇠ pemp(· , · , · |⌧train) for k = 1, . . . ,K

5: ✓0 h(✓, x1, . . . , xK ;�)

6: (✓,�) (✓,�)� ⌘r(✓,�)

PK
k=1 `(g(xk; ✓

0), yk)

// Test time adaptation procedure
Require: ✓, �, test batch x1, . . . , xK

7: ✓0 h(✓, x1, . . . , xK ;�)

8: ŷk g(xk; ✓
0) for k = 1, . . . ,K

Algorithm 1 presents a general meta-
learning approach for optimizing the
ARM objective. In line 5, h outputs
updated parameters ✓0 using an unla-
beled batch of data. We assume that
h is a differentiable function with re-
spect to ✓ and �, and this allows us to
meta-train both ✓ and � for post adap-

tation performance on a mini batch of
data sampled according to a particu-
lar ⌧train (line 6). However, this adap-
tation is performed using unlabeled
data, mimicking the test time proce-
dure detailed in lines 7-8. In practice,
we typically sample mini batches of
training tasks, to provide a better gra-
dient signal for optimizing �.

Figure 2: During inference, the context network pro-
duces a vector ck for each input image xk in the batch,
and the average of these vectors c̄ is input to the predic-
tion network. The average context may adapt the model
by providing helpful information about the underlying
test distribution, e.g., the prevalence of certain groups
such as blond-haired females, and this adaptation can
aid prediction for difficult or ambiguous examples. Dur-
ing training, we compute the loss of the post adaptation
predictions and backpropagate through the inference
procedure to update our models.

We instantiate the model and adaptation proce-
dure based on a contextual meta-learning ap-
proach with deep neural networks [69, 20]. In
particular, we introduce two neural networks:
a context network fcont(· ;') : X ! RD, pa-
rameterized by ', and a prediction network

fpred(· , · ;) : X ⇥RD ! Y , parameterized by
 . fcont processes each example xk in the mini
batch separately to produce contexts ck 2 RD

for k = 1, . . . ,K, where D is a hyperparameter.
In our experiments, we choose D to be the di-
mensionality of x. These contexts are averaged
together into c̄ = 1

K

PK
k=1 ck. fpred similarly

processes each xk separately to produce an esti-
mate of the output ŷk, but it additionally receives
c̄ as input. In this way, fcont can provide informa-
tion about the entire batch of K unlabeled data
points to fpred for predicting the correct outputs.

A schematic of our approach is presented in
Figure 2. The post adaptation model parameters
✓0 are (, c̄), whereas we can view the model
parameters before adaptation as consisting of and an undefined D-dimensional placeholder. Since
we only ever use the model after adaptation, both during training and at test time, we can simply
define g(x; ✓0) = fpred(x, c̄;), leaving the model’s behavior before adaptation undefined. We then
also see that h is a function that takes in (, x1, . . . , xK) and produces

⇣
 , 1

K

PK
k=1 fcont(xk;')

⌘
,

and therefore its parameters � are ', the parameters of fcont.

5

Assumption

othpoints
makeheme f
If h isdef

ontablets it
won'tbeofany
use at test
time
2 hneedstobe
differential
w r t both
O andO

5 Experiments

Our experiments are designed to answer the following questions:
(1) Does our method for adaptive risk minimization learn models that can adapt to shift?
(2) How does our method for adaptation compare to group robustness methods?
(3) Can we visualize and understand scenarios where our method successfully adapts to shift?

5.1 Evaluation Domains and Protocol

We evaluate on three image classification benchmarks, which we choose because they incorporate
meta-data that simplifies the process for constructing and testing against structural distribution shift,
as described below. Additional experimental details are provided in Appendix A.

Rotated MNIST. We study a modified version of MNIST digit recognition [36] where images are
rotated in 5 degree increments, for a total of 72 rotations. Taking each rotation to be a group, the
smallest training groups, which consist of rotations from 0 to 115 degrees, contain only 135 data
points each, whereas the entire training set contains 324000 points. At test time, we dynamically
generate images from the MNIST test set with a certain rotation, and we consider each method’s
worst case and average accuracy across groups.

We compare our approach to (1) ERM, (2) distributionally robust neural networks (DRNN) [55], a
state-of-the-art DRO method, and (3) a baseline that samples uniformly from each group. Sagawa
et al. [55] refer to this baseline as upweighting (UW) and finds that it exhibits good worst case
performance. We also consider a “context ablation” of our method that utilizes the same architecture
as our method but samples uniformly from each group during training time, rather than sampling
from tasks that induce distribution shift. This ablation helps determine whether our method benefits
from this task-driven approach or if we simply benefit from observing multiple data points at a time.

Federated Extended MNIST (FEMNIST). Our second set of experiments uses the FEMNIST
dataset [9], a version of the extended MNIST (EMNIST) dataset [11] that associates each handwritten
character with the user that wrote the character. EMNIST consists of images of handwritten uppercase
and lowercase letters, in addition to digits. We construct a training set of 62732 examples from 262
users, where the smallest user has 104 examples. The test set consists of 8439 examples from 35
users not seen at training time, and the smallest user has 140 examples. We measure each method’s
worst case and average test accuracy across users, as well as empirical accuracy on the test set.

We compare our method with ERM, the context ablation, and q-FedAvg [38], a state-of-the-art
approach for fair federated learning that optimizes the q-fairness objective as described in Section 3.
Similar to Sagawa et al. [55], Li et al. [38] also found that uniformly sampling from each user is a
strong baseline. We thus also compare to this approach, which we refer to as UW for consistency.

For MNIST and FEMNIST, we use convolutional neural networks for both fcont and fpred in our
method and the context ablation. The other methods also use convolutional networks. However, to be
fair in terms of parameters, we increase the depth of the network used by these methods, such that it
has more parameters than the total parameters of our context and prediction networks combined.

CelebA. CelebA is a dataset of celebrity faces with binary attributes attached to each photo [43].
We follow the protocol from Sagawa et al. [55], where the task corresponds to classifying the
Blond_Hair attribute, and groups are constructed based on a combination of this attribute with the
Male attribute, for a total of 4 groups. This pair of attributes is correlated in the training data, and
the groups are strongly unbalanced, with the smallest group, corresponding to blond hair males,
occupying only 1387 of the overall 162770 training data points.

In this domain, the label of interest is used to construct the groups, meaning that within a single
group, all of the examples have the same label. Our method therefore has a distinct advantage when
considering the worst case accuracy across groups, as the adaptation model in principle can update the
model to output a constant label. We consider a more challenging evaluation scenario for our method:
instead of measuring worst case accuracy over groups, we approximate the worst case accuracy over
all group distributions using a binning strategy. Specifically, we divide the 3-dimensional probability
simplex defined by the 4 groups into 5 bins: one bin each for one group occupying over 50% of the
overall distribution, and one bin for when no groups occupy 50% of the distribution. During testing,
we measure performance of our method on each bin separately and take the minimum across bins as

6

Method Worst Case Accuracy Average Accuracy
ERM 0.8695 (0.0031) 0.9582 (0.0006)
UW baseline 0.8722 (0.0063) 0.9544 (0.0012)
DRNN [55] 0.8767 (0.0088) 0.9450 (0.0075)
Context ablation 0.7844 (0.0071) 0.9183 (0.0033)
ARM (ours) 0.9372 (0.0026) 0.9724 (0.0013)

Table 1: Comparison between ERM, UW, DRNN [55], the context ablation,
and our method on worst case and average test accuracy across groups on
the rotated MNIST dataset (standard error in parentheses). Our method
significantly improves upon both metrics compared to all baselines, prior
methods, and ablations.

Figure 3: Test accuracy of each
method as a function of the rota-
tion. Our method performs signifi-
cantly better on the rare groups.

Method Worst Case Accuracy Average Accuracy Empirical Accuracy
ERM 0.6431 (0.0222) 0.8008 (0.0072) 0.8019 (0.0110)
UW baseline 0.6260 (0.0072) 0.8123 (0.0079) 0.8067 (0.0152)
q-FedAvg [38] 0.5819 (0.0098) 0.8075 (0.0034) 0.8118 (0.0019)
Context ablation 0.6436 (0.0073) 0.8149 (0.0068) 0.8177 (0.0056)
ARM (ours) 0.6780 (0.0133) 0.8570 (0.0025) 0.8598 (0.0036)

Table 2: On the FEMNIST dataset, our method again improves upon all baselines, ablations, and prior methods
in terms of all metrics, including a state-of-the-art method for fair federated learning [38]. The context ablation
performs comparably to the other methods, though our method is still better.

the estimated worst case performance. This evaluation protocol consistently produces lower estimates
of worst case performance for our method than simply evaluating across individual groups.

We again compare to ERM, DRNN, the UW baseline, and the context ablation. We largely follow
the protocol from Sagawa et al. [55] when applicable: we use ResNet-50 models [25], pretrained
on ImageNet, as the prediction model for all methods, with large weight decay and early stopping.
However, we keep our context model as a simple convolutional neural network.

5.2 Quantitative Evaluation and Comparisons

Table 1 summarizes our results on the MNIST domain. We see that our method significantly improves
worst case accuracy by over 6% on average compared to DRNN, which as expected provides the
highest baseline for this metric. Unlike DRNN, our method does not sacrifice average accuracy in
favor of robustness, as we also significantly improve in average accuracy compared to ERM, the
highest baseline for this metric. We can see that our context ablation performs poorly, both compared
to ARM, due to not explicitly training for adaptation, and compared to the other methods, which we
attribute to having fewer parameters. In Figure 3, we visualize each method’s accuracy as a function
of the group. Though all methods perform worse on the rare groups, as seen by the consistent dip in
performance, our method performs significantly better specifically on these groups, thus resulting in
both better worst case accuracy and better average accuracy.

In Table 2, we summarize our results in the case of shift in the end user for the FEMNIST dataset.
We again see that our method exhibits stronger results across all metrics compared to all baselines.
Interestingly, we see that in our setting where train and test users don’t overlap, q-FedAvg and UW
perform worse in terms of worst case accuracy compared to ERM. We note that this prior method was
previously only evaluated in the federated learning setting where each user’s data is partitioned into a
training and test set [38], and we believe our setting presents a harder problem that is representative
of many real world settings. In order to gain intuition about the benefits of our method compared to
ERM, we visualize predictions made by these models in subsection 5.3.

Finally, Table 3 summarizes the results of our approach and other methods on CelebA image
classification. Our method consistently outperforms both DRNN and UW on the worst case, average,
and empirical test accuracy metrics. This indicates that our method is able to successfully leverage
unlabeled test data points to adapt the model and achieve greater robustness and performance. ERM
achieves the strongest empirical test accuracy, however, consistent with the results from Sagawa
et al. [55], we find that ERM has by far the lowest worst case accuracy. We note that our worst

7

nificant

Method Worst Case Accuracy Average Accuracy Empirical Accuracy
ERM 0.4092 (0.0188) 0.8074 (0.0059) 0.9533 (0.0001)
UW baseline 0.8778 (0.0096) 0.9176 (0.0028) 0.9218 (0.0011)
DRNN [55] 0.8684 (0.0018) 0.9143 (0.0010) 0.9277 (0.0012)
Context ablation 0.8599 (0.0156) 0.9102 (0.0016) 0.9186 (0.0037)
ARM (ours) 0.9098 (0.0016) 0.9237 (0.0007) 0.9358 (0.0016)

Table 3: On the CelebA dataset, our method consistently attains better worst case accuracy than the other
methods while also maintaining higher average and empirical accuracy. Note that we were able to significantly
improve upon the UW results reported in Sagawa et al. [55], though our DRNN results are slightly worse.
However, we note that our method also performs better than the DRNN results reported in Sagawa et al. [55].

case accuracy results for DRNN are slightly worse than those reported in Sagawa et al. [55] (0.8684
compared to 0.889). We attribute this difference to not using their group adjustment technique,
however, our method still performs significantly better, achieving 0.9098 worst case accuracy. We
present an additional experiment in Appendix B demonstrating even larger performance gains for
our method when the prediction network is trained from scratch, rather than pretrained. Thus, we
confirm our hypothesis that training models to adapt using unlabeled test batches leads to better
overall performance compared to models trained for robustness.

5.3 Qualitative Analysis of Adaptive Risk Minimization

Figure 4: Visualizing one batch
of 50 images from a test user in
FEMNIST. Our method, using the
entire batch, is able to success-
fully adapt to output the correct
label “a” on the ambiguous ex-
ample, shown enlarged, whereas
ERM incorrectly outputs “2”.

In Figure 4, we present an example of how our approach can improve
test accuracy by adapting to specific users. We visualize a batch of
50 examples from a randomly sampled FEMNIST test user, and we
highlight an ambiguous example. ERM and our method, when only
given a batch size of 2 as shown by the black dashed box, incorrectly
classify this example as “2”. However, when given access to the
entire batch of 50 images, which contain examples of class “2” and
“a” from this user, our method successfully adapts this prediction to
instead output “a”, which is the correct label. In general, we find
that most examples of adaptation in FEMNIST occur for similarly
ambiguous examples, e.g., “l” versus “I”, though not all examples
were interpretable. In Appendix B, we plot performance as a function
of the batch size at test time. Though our method is trained with
batches of size 50, we find that the model is able to adapt with batch
sizes as small as 10, indicating that our method can immediately
begin to improve model performance even for small data set sizes.

6 Discussion and Future Work

We presented adaptive risk minimization (ARM), a problem formulation for learning models that can
robustly adapt in the face of group distribution shift at test time using only a batch of unlabeled test
examples. We devised a method for optimizing the ARM objective that uses meta-learning to train
models that are adaptable to sub-distributions of training data, thus not requiring information about
the test distribution at training time, nor limiting the model to only one test distribution as in domain
adaptation methods. Empirically, we demonstrated that our method improves performance in terms
of both average and worst case metrics, as compared to ERM and group robustness approaches.

Currently, our method relies on ground truth meta-data for each training data point, similar to group
robustness methods. Future work will aim to relieve this assumption, either by learning groupings of
data or incorporating incomplete and partial meta-data into the learning process. Learning groups
for robustness is a particularly interesting direction, as we hypothesize that properly learned groups
may help in certain scenarios even when meta-data is available. For example, one might imagine
grouping users together based on similarity in appearance, style, etc., rather than requiring robustness
or adaptability over each individual user. Our method can also likely be further improved with more
sophisticated meta-learning approaches, such as optimization based meta-learning using a learned
loss function [2, 4], and this is another exciting direction for future work.

8

Broader Impact

Though machine learning systems have been deployed in many real world domains with great success,
data that is anomalous or structurally different from the training data still sometimes renders these
systems unreliable, harmful, or even dangerous. It is necessary, in order to realize the full potential of
machine learning “in the wild”, to have effective methods for detecting, robustifying against, and
adapting to distribution shift. The potential upsides of developing such methods are clear. Imagine
systems for image classification that fix incorrect or offensive outputs by adapting to each end user,
or self driving cars that can smoothly adapt to driving in a new setting. We believe our work is a
small step toward the goal of adapting in the face of distribution shift.

However, there are also complications and downsides that must be considered. For example, it
is important to understand the failure modes and theoretical limits to handling distribution shift,
otherwise we may place “false confidence” in our deployed systems, which may be catastrophic. Our
work does not address this aspect of the problem, though this is an important direction for future
work. Perhaps more insidiously, this line of research may grant even greater capabilities to parties
that are able to collect larger and larger datasets. Deep learning systems are capable of effectively
learning from ever growing data, and as the training data grows, the system can be trained to better
adapt to a wider range of potential shifts. Thus, it is imperative to continue to push for high quality
open source datasets, so that we may democratize the tools of machine learning.

Acknowledgements. MZ thanks Matt Johnson and Sharad Vikram for helpful discussions and is
supported by an NDSEG fellowship. HM is funded by a scholarship from the Dr. Tech. Marcus
Wallenberg Foundation for Education in International Industrial Entrepreneurship. AG is supported
by an NSF graduate research fellowship. CF is a CIFAR Fellow in the Learning in Machines and
Brains program. This research was supported by the DARPA Assured Autonomy and Learning with
Less Labels programs.

References
[1] K. Allen, E. Shelhamer, H. Shin, and J. Tenenbaum. Infinite mixture prototypes for few-shot

learning. In International Conference on Machine Learning (ICML), 2019.

[2] A. Antoniou and A. Storkey. Learning to learn via self-critique. In Advances in Neural

Information Processing Systems (NeurIPS), 2019.

[3] M. Baktashmotlagh, M. Harandi, B. Lovell, and M. Salzmann. Unsupervised domain adaptation
by domain invariant projection. In IEEE International Conference on Computer Vision (ICCV),
2013.

[4] S. Bechtle, A. Molchanov, Y. Chebotar, E. Grefenstette, L. Righetti, G. Sukhatme, and F. Meier.
Meta-learning via learned loss. arXiv preprint arXiv:1906.05374, 2019.

[5] A. Ben-Tal, D. den Hertog, A. De Waegenaere, B. Melenberg, and G. Rennen. Robust solutions
of optimization problems affected by uncertain probabilities. Management Science, 2013.

[6] S. Bengio, Y. Bengio, J. Cloutier, and J. Gecsei. On the optimization of a synaptic learning rule.
In Optimality in Artificial and Biological Neural Networks, 1992.

[7] J. Blanchet, Y. Kang, and K. Murthy. Robust Wasserstein profile inference and applications to
machine learning. arXiv preprint arXiv:1610.05627, 2016.

[8] M. Buda, A. Maki, and M. Mazurowski. A systematic study of the class imbalance problem in
convolutional neural networks. Neural Networks, 2018.

[9] S. Caldas, S. Duddu, P. Wu, T. Li, J. Konečný, H. McMahan, V. Smith, and A. Talwalkar. LEAF:
A benchmark for federated settings. In Workshop on Federated Learning for Data Privacy and

Confidentiality, 2019.

[10] F. Chen, M. Luo, Z. Dong, Z. Li, and X. He. Federated meta-learning with fast convergence
and efficient communication. arXiv preprint arXiv:1802.07876, 2018.

9

[11] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik. EMNIST: An extension of MNIST to
handwritten letters. arXiv preprint arXiv:1702.05373, 2017.

[12] C. Cortes, M. Mohri, M. Riley, and A. Rostamizadeh. Sample selection bias correction theory.
In International Conference on Algorithmic Learning Theory (ALT), 2008.

[13] G. Csurka. Domain adaptation for visual applications: A comprehensive survey. arXiv preprint:

arXiv:1702.05374, 2017.

[14] Q. Dou, D. Castro, K. Kamnitsas, and B. Glocker. Domain generalization via model-agnostic
learning of semantic features. In Advances in Neural Information Processing Systems (NeurIPS),
2019.

[15] J. Duchi, P. Glynn, and H. Namkoong. Statistics of robust optimization: A generalized empirical
likelihood approach. arXiv preprint arXiv:1610.03425, 2016.

[16] P. Esfahani and D. Kuhn. Data-driven distributionally robust optimization using the Wasserstein
metric: Performance guarantees and tractable reformulations. arXiv preprint arXiv:1505.05116,
2015.

[17] A. Fallah, A. Mokhtari, and A. Ozdaglar. Personalized federated learning: A meta-learning
approach. arXiv preprint arXiv:2002.07948, 2020.

[18] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In International Conference on Machine Learning (ICML), 2017.

[19] Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by backpropagation. In Interna-

tional Conference on Machine Learning (ICML), 2015.

[20] M. Garnelo, D. Rosenbaum, C. Maddison, T. Ramalho, D. Saxton, M. Shanahan, Y. Teh,
D. Rezende, and S. Eslami. Conditional neural processes. In International Conference on

Machine Learning (ICML), 2018.

[21] A. Globerson and S. Roweis. Nightmare at test time: Robust learning by feature deletion. In
International Conference on Machine Learning (ICML), 2006.

[22] B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow kernel for unsupervised domain
adaptation. In Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[23] A. Gupta, B. Eysenbach, C. Finn, and S. Levine. Unsupervised meta-learning for reinforcement
learning. arXiv preprint arXiv:1806.04640, 2018.

[24] J. Harrison, A. Sharma, C. Finn, and M. Pavone. Continuous meta-learning without tasks. arXiv

preprint arXiv:1912.08866, 2019.

[25] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[26] D. Hendrycks and T. Dietterich. Benchmarking neural network robustness to common cor-
ruptions and perturbations. In International Conference on Learning Representations (ICLR),
2019.

[27] D. Hendrycks, K. Zhao, S. Basart, J. Steinhardt, and D. Song. Natural adversarial examples.
arXiv preprint arXiv:1907.07174, 2019.

[28] S. Hochreiter, A. Younger, and P. Conwell. Learning to learn using gradient descent. In
International Conference on Artificial Neural Networks (ICANN), 2001.

[29] S. Horiguchi, S. Amano, M. Ogawa, and K. Aizawa. Personalized classifier for food image
recognition. IEEE Transactions on Multimedia, 2018.

[30] K. Hsu, S. Levine, and C. Finn. Unsupervised learning via meta-learning. In International

Conference on Learning Representations (ICLR), 2019.

10

[31] W. Hu, G. Niu, I. Sato, and M. Sugiyama. Does distributionally robust supervised learning give
robust classifiers? In International Conference on Machine Learning (ICML), 2018.

[32] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf. Correcting sample selection
bias by unlabeled data. In Advances in Neural Information Processing Systems (NIPS), 2007.

[33] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International Conference on Machine Learning (ICML), 2015.

[34] Y. Jiang, J. Konečný, K. Rush, and S. Kannan. Improving federated learning personalization
via model agnostic meta learning. arXiv preprint arXiv:1909.12488, 2019.

[35] D. Lazer, R. Kennedy, G. King, and A. Vespignani. The parable of Google flu: Traps in big
data analysis. Science, 2014.

[36] Y. LeCun, C. Cortes, and C. Burges. The MNIST database of handwritten digits. http:

//yann.lecun.com/exdb/mnist/. Accessed: 2020/06/01.

[37] D. Li, Y. Yang, Y. Song, and T. Hospedales. Learning to generalize: Meta-learning for domain
generalization. In AAAI Conference on Artificial Intelligence (AAAI), 2018.

[38] T. Li, M. Sanjabi, A. Beirami, and V. Smith. Fair resource allocation in federated learning. In
International Conference on Learning Representations (ICLR), 2020.

[39] X. Li, Q. Sun, Y. Liu, Q. Zhou, S. Zheng, T. Chua, and B. Schiele. Learning to self-train for
semi-supervised few-shot classification. In Advances in Neural Information Processing Systems

(NeurIPS), 2019.

[40] S. Lin, Y. Guang, and J. Zhang. Real-time edge intelligence in the making: A collaborative
learning framework via federated meta-learning. arXiv preprint arXiv:2001.03229, 2020.

[41] Z. Lipton, Y. Wang, and A. Smola. Detecting and correcting for label shift with black box
predictors. In International Conference on Machine Learning (ICML), 2018.

[42] A. Liu and B. Ziebart. Robust classification under sample selection bias. In Advances in Neural

Information Processing Systems (NIPS), 2014.

[43] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In IEEE

International Conference on Computer Vision (ICCV), 2015.

[44] M. Long, Z. Cao, J. Wang, and M. Jordan. Conditional adversarial domain adaptation. In
Advances in Neural Information Processing Systems (NeurIPS), 2018.

[45] H. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Arcas. Communication-efficient
learning of deep networks from decentralized data. In International Conference on Artificial

Intelligence and Statistics (AISTATS), 2017.

[46] L. Metz, N. Maheswaranathan, B. Cheung, and J. Sohl-Dickstein. Meta-learning update rules for
unsupervised representation learning. In International Conference on Learning Representations

(ICLR), 2019.

[47] T. Miyato, S. Maeda, M. Koyama, K. Nakae, and S. Ishii. Distributional smoothing with virtual
adversarial training. arXiv preprint arXiv:1507.00677, 2015.

[48] M. Mohri, G. Sivek, and A. Suresh. Agnostic federated learning. In International Conference

on Machine Learning (ICML), 2019.

[49] A. Nichol, J. Achiam, and J. Schulman. On first-order meta-learning algorithms. arXiv preprint

arXiv:1803.02999, 2018.

[50] Y. Oren, S. Sagawa, T. Hashimoto, and P. Liang. Distributionally robust language modeling. In
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2019.

[51] J. Quiñonero Candela, M. Sugiyama, A. Schwaighofer, and N. Lawrence. Dataset Shift in

Machine Learning. The MIT Press, 2009.

11

[52] S. Ravi and H. Larochelle. Optimization as a model for few-shot learning. In International

Conference on Learning Representations (ICLR), 2017.

[53] M. Ren, E. Triantafillou, S. Ravi, J. Snell, K. Swersky, J. Tenenbaum, H. Larochelle, and
R. Zemel. Meta-learning for semi-supervised few-shot classification. In International Confer-

ence on Learning Representations (ICLR), 2015.

[54] A. Royer and C. Lampert. Classifier adaptation at prediction time. In Conference on Computer

Vision and Pattern Recognition (CVPR), 2015.

[55] S. Sagawa, P. Koh, T. Hashimoto, and P. Liang. Distributionally robust neural networks for
group shifts: On the importance of regularization for worst-case generalization. In International

Conference on Learning Representations (ICLR), 2020.

[56] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. Meta-learning with
memory-augmented neural networks. In International Conference on Machine Learning

(ICML), 2016.

[57] J. Schmidhuber. Evolutionary principles in self-referential learning. Diploma thesis, Institut f.

Informatik, Tech. Univ. Munich, 1987.

[58] B. Schölkopf, D. Janzing, J. Peters, E. Sgouritsa, K. Zhang, and J. Mooij. On causal and
anticausal learning. In International Conference on Machine Learning (ICML), 2012.

[59] S. Shan and J. Oliva. Meta-neighborhoods. arXiv preprint arXiv:1909.09140, 2019.

[60] L. Shen, Z. Lin, and Q. Huang. Relay backpropagation for effective learning of deep convolu-
tional neural networks. In European Conference on Computer Vision (ECCV), 2016.

[61] H. Shimodaira. Improving predictive inference under covariate shift by weighting the log-
likelihood function. Journal of Statistical Planning and Inference (JSPI), 2000.

[62] J. Snell, K. Swersky, and R. Zemel. Prototypical networks for few-shot learning. In Advances

in Neural Information Processing Systems (NIPS), 2017.

[63] A. Storkey and M. Sugiyama. Mixture regression for covariate shift. In Advances in Neural

Information Processing Systems (NIPS), 2007.

[64] M. Sulc and J. Matas. Improving CNN classifiers by estimating test-time priors. In IEEE

International Conference on Computer Vision (ICCV), 2019.

[65] Y. Sun, X. Wang, Z. Liu, J. Miller, A. Efros, and M. Hardt. Test-time training for out-of-
distribution generalization. arXiv preprint arXiv:1909.13231, 2019.

[66] S. Thrun and L. Pratt. Learning to Learn. Springer Science & Business Media, 1998.

[67] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. Adversarial discriminative domain adaptation.
In Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[68] V. Vapnik. Statistical Learning Theory. Wiley New York, 1998.

[69] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra. Matching networks for
one shot learning. In Advances in Neural Information Processing Systems (NIPS), 2016.

[70] Y. Wang, D. Ramanan, and M. Hebert. Learning to model the tail. In Advances in Neural

Information Processing Systems (NIPS), 2017.

[71] T. Yu, C. Finn, A. Xie, S. Dasari, P. Abbeel, and S. Levine. One-shot imitation from observing
humans via domain-adaptive meta-learning. In RSS, 2018.

[72] M. Zafar, I. Valera, M. Rodriguez, and K. Gummadi. Fairness beyond disparate treatment &
disparate impact: Learning classification without disparate mistreatment. In International World

Wide Web Conference (WWW), 2017.

12

A Additional Experimental Details

When reporting our results, we run each method across three seeds and report the mean and standard
error across seeds. Standard error is calculated as the sample standard deviation divided by the square
root of 3. We checkpoint models after every epoch of training, and at test time, we evaluate the
checkpoint with the best worst case validation accuracy. Training hyperparameters and details for
how we evaluate validation and test accuracy are provided for each experimental domain below.

A.1 Rotated MNIST Details

We construct a training set of 324000 data points by replicating 90% of the original training set –
separating out a validation set – 6 times and applying random rotations to each image. The rotations
are not dependent on the image or label, but certain rotations are sampled much less frequently than
others. In particular, rotations of 0 through 115 degrees, inclusive, have 135 data points each, 120
through 235 degrees have 1350 points each, and 240 through 355 degrees have 12015 points each.

We train all models for 200 epochs with mini batch sizes of 50. We sample uniformly across rotations
as this is a standard technique for improving performance on rare groups [8, 55]. We use Adam
updates with learning rate 0.0001 and weight decay 0.0001. We construct an additional level of
mini batching for our method as described in subsection 4.2, such that the batch dimensions of the
data mini batches is 6⇥ 50 rather than just 50, and each of the inner mini batches contain examples
from the same rotation. We refer to the outer batch dimension as the meta batch size and the inner
dimension as the batch size. All methods are still trained for the same number of epochs and see the
same amount of data. Finally, DRNN uses an additional learning rate hyperparameter for their robust
loss, which we set to 0.01 across all experiments [55].

Due to the large number of groups in this setting, we only compute validation accuracy every 10
epochs. When computing validation accuracy, we estimate accuracy on each rotation by randomly
sampling 300 of the held out 6000 original training points and applying the specific rotation, resam-
pling for each validation evaluation. This is effectively the same procedure as the test evaluation,
which randomly samples 3000 of the 10000 test points and applies a specific rotation.

We retain the original 28 ⇥ 28 ⇥ 1 dimensionality for the MNIST images, and we divide inputs
by 256. We use convolutional neural networks for all methods with varying depths to account for
parameter fairness. For ERM, the UW baseline, and DRNN, the network has four convolution layers
with 128 filters of size 5⇥5, followed by 4⇥4 average pooling, one fully connected layer of size 200,
and a linear output layer. Rectified linear unit (ReLU) nonlinearities are used throughout, and batch
normalization [33] is used for the convolution layers. The first two convolution layers use padding
to preserve the input height and width, and the last two convolution layers use 2⇥ 2 max pooling.
For our method and context ablation, we remove the first two convolution layers for the prediction
network, but we incorporate a context network. The context network uses two convolution layers
with 64 filters of size 5⇥ 5, with ReLU nonlinearities, batch normalization, and padding, followed
by a final convolution layer with padding. This last layer has number of filters, of size 5⇥ 5, equal to
the channel dimensionality of the input, which in this case is 1.

A.2 FEMNIST Details

FEMNIST, and EMNIST in general, is a significantly more challenging dataset compared to MNIST
due to its larger label space (62 compared to 10 classes), label imbalance (almost half of the data
points are digits), and inherent ambiguities (e.g., lowercase versus uppercase “o”) [11]. In processing
the FEMNIST dataset,2 we filter out users with fewer than 100 examples, leaving 262, 50, and 35
unique users and a total of 62732, 8484, and 8439 data points in the training, validation, and test
splits, respectively. The smallest users contain 104, 119, and 140 data points, respectively. We keep
all hyperparameters the same as MNIST, except we set the meta batch size for our method to be 2.

We compare to q-FedAvg rather than DRNN on this domain, as this method is specifically de-
signed for federated learning settings [38]. We modify the authors’ publicly available code3 to
run experiments in our setting, and we will make this fork available upon publication along with

2Obtained from https://github.com/TalwalkarLab/leaf/tree/master/data/femnist.
3https://github.com/litian96/fair_flearn

13

our own code base. This method follows its own update rule and hyperparameter settings, and we
separately optimize the hyperparameters for q-FedAvg as described in Li et al. [38]. Specifically,
we first set q = 0 and sweep learning rate values between 0.0001 and 1.0, and then we sweep
q 2 {0.001, 0.01, 0.1, 0.5, 1, 2, 5, 10, 15} with the optimal learning rate. With this procedure, we set
learning rate to be 0.8 and q to be 0.001.

We compute validation accuracy every epoch by iterating through the data of each validation user
once, and this procedure is the same as test evaluation. Note that all methods will sometimes receive
small batch sizes as each user’s data size may not be a multiple of 50, and though this may affect our
method and the context ablation, we demonstrate in Appendix B that our method can adapt using
batch sizes much smaller than 50. The network architectures are the same as the architectures used
for rotated MNIST.

A.3 CelebA Details

We obtain the CelebA dataset from Kaggle.4 We retain the standard train, validation, and test splits,
which have 162770, 19867, and 19962 data points, respectively. There are four groups from the
combination of the Blond_Hair attribute, which is also the label, and the Male attribute. The
smallest group across the training, validation, and test splits corresponds to blond hair males, with
1387, 182, and 180 data points, respectively.

We run two separate sets of experiments on this domain. First, as reported in subsection 5.2, we use a
ResNet-50 [25] model pretrained on ImageNet, which we obtain from the torchvision library of
pretrained models. This aligns with the experimental protocol followed in Sagawa et al. [55]. We
additionally run experiments using the same model trained from scratch, and we report results for this
setting in Appendix B. We describe all hyperparameter differences between the two settings below –
unless otherwise stated, other hyperparameters are identical to those in the FEMNIST experiments.

First, we train for 50 epochs, when we use the pretrained network, or 100 epochs when training
from scratch. Second, we set weight decay to 0.5. This weight decay hyperparameter deviates from
traditional deep learning practice but has been shown by Sagawa et al. [55] to be helpful for achieving
good generalization on the worst case group, thus we adopt this approach as well. Third, we decay the
learning rate to 0.00001 after one training epoch, which Sagawa et al. [55] use throughout training.
Lastly, for our method, each inner batch consists of examples from the same distribution over groups,
rather than from the same group. Specifically, we construct a flat Dirichlet distribution, i.e., with
concentration parameter ↵ as a 4-dimensional vector of ones. For each training step, we sample from
this distribution twice, when using the pretrained network, or 3 times, if training from scratch. We
then use these samples as the parameters of the categorical distribution over groups for sampling
50 training examples each, again giving us batch size 50 and meta batch size either 2 or 3. This
sampling procedure at training time matches the validation and test evaluation, which we perform
over distributions of groups rather than groups themselves.

Though the prediction network is a ResNet-50, we keep the context network as the same simple
convolutional network as in the previous experiments, except the output channel dimension is changed
to 3 in line with the input dimensionality. For data preprocessing we apply a 178⇥ 178 center crop
to each image and normalize using the ImageNet mean and standard deviation. When using the
pretrained network, which expects a particular input dimensionality, we further resize the input to
224 ⇥ 224 ⇥ 3. Finally, we compute the worst case validation accuracy using the same binning
strategy for computing worst case test accuracy. Specifically, we sample 15 distributions uniformly
from each bin, sample 1500 images per distribution, and average the accuracies per bin before taking
measuring the minimum across bins. For test evaluation, we sample 3000 images per distribution.

B Additional Experiments

B.1 CelebA without ImageNet Pretraining

Table 4 presents our results on the CelebA dataset when training from scratch. We see that accuracy
in general suffers from not having access to ImageNet pretraining, and our model again consistently
beats out the UW baseline and DRNN on all metrics. There is a noticeably larger gap specifically in

4https://www.kaggle.com/jessicali9530/celeba-dataset/data

14

Method Worst Case Accuracy Average Accuracy Empirical Accuracy
UW baseline 0.8297 (0.0145) 0.8865 (0.0035) 0.8953 (0.0043)
DRNN [55] 0.8426 (0.0122) 0.8902 (0.0029) 0.8980 (0.0008)
ARM (ours) 0.8900 (0.0053) 0.9016 (0.0018) 0.9269 (0.0069)

Table 4: On the CelebA dataset, when training from scratch, we see lower accuracies across the board as
expected. However, our method shows even more significant gains over the UW baseline and DRNN in terms of
worst case accuracy across groups, coming closer to its performance when using the pretrained model. We omit
ERM, due to its poor worst case accuracy, and the context ablation, due to its worse performance on all metrics
compared to the three methods considered here, though we note that ERM would likely still have the highest
empirical accuracy in this setting.

Figure 5: Worst case (blue), average (orange), and empirical (green) performance of ARM on FEMNIST (left)
and CelebA (right) as a function of the test batch size. We do not measure performance for every test batch
size for CelebA for computational efficiency. For FEMNIST, average and empirical performance track each
other very closely, though the difference is more pronounced on CelebA due to the larger difference in group
sizes. For both domains, we see that our method can adapt using batch sizes as small as 10, despite training with
batches of size 50.

terms of worst case accuracy compared to the previous results that were obtained using pretrained
models, with our method coming closest to its previous results. We note again that DRNN may
enjoy a slight performance boost compared to our reported results if we further include the group
adjustment technique from Sagawa et al. [55], though we believe it is unlikely that this technique
would fully close the gap between DRNN and our method.

B.2 Test Batch Size and Adaptation Accuracy

Figure 5 visualizes the performance of our method as a function of the batch size at test time. We
only change the test batch size in these plots, and the models were trained with batch sizes of 50. We
can see that adaptation performance starts to improve sometimes with batches as small as 2 images,
and performance is close to the original accuracy with batches as small as 10 images. This lends
support to our hypothesis that our method can successfully adapt to test time shifts, without access to
any test data labels and even with small data sizes.

15

